Clean Coal: Resolution or Ruse?

Fargo Nerd Night: November 14, 2018

Jake Glower
Jacob_Glower@yahoo.com

Sonja Kaye KayeSonja@gmail.com Rennae Gruchalla rgruch@aol.com

The first principle is that you must not fool yourself -- and you are the easiest person to fool.

Richard Feynman

Background

- ND produces 65% of its energy from coal
- Coal produces large amounts of CO₂
- CO₂ is a pollutant (EPA) detrimental to human health and planetary health

Carbon Sequestration

a.k.a. Clean Coal

- $C + O_2 = CO_2 + heat$
- Carbon Sequestration seeks to eliminate or bottle up the CO₂
- Other pollutants (Hg, S, etc.) are not addressed
- Four proposed methods are
 - Oxy-Fuel Combustion
 - Capture CO₂ in Limestone Deposits
 - Capture CO₂ in Olivine
 - Underground Storage

Our contention

- Clean coal does not exist
- Clean coal proposals do not and cannot work
- Some of us in C.L.E.A.N. believe that clean coal is little more than a ruse to confuse the public and politicians in an effort to extend the life of coal - similar to tactics used by the tobacco industry

Oxy-Fuel Combustion

a.k.a. Allum Cycle: Carbon Sequestration Method #1

- Air consists of 70% Nitrogen
- The hotter a furnace becomes, the more efficient it is (good)
- The hotter the furnace becomes, the more nitrous oxides are formed (bad)
- Oxy-Fuel Combustion burns coal with pure oxygen atmosphere, allowing
 - Higher temperatures
 - Without producing nitrous oxides
 - Without the need of smokestacks

Oxy-Fuel Combustion

Problems

- It takes energy to make pure oxygen
- You still produce the same amount of CO₂ as a byproduct

Carbon Sequestration Method #2: Idea

- If you pump CO₂ into limestone caves, a chemical reaction takes place capturing the CO₂.
- This is how limestone caves are made

- Pass CO₂ and water through a limestone deposit and you get calcium bicarbonate.
 - The limestone is dissolved (creating a cave or empty space)
 - The CO₂ is captured and placed in solution

Problem #1/3

- The U.S. burns 728 million tons of coal each year
- This produces 5,924 million tons of CO₂
- Which requires 2760 million cubic yards of limestone to capture the CO2 each year
- We need to create a limestone cave, 200x larger than the largest limestone cavern each year

Problem #2/3

- Calcium Bicarbonate does not exist in solid form. It must remain in solution
 - You cannot recycle or reuse the water
- Calcium Bicarbonate decomposes into limestone and CO₂
 - This is how stalactites form
 - This is how scale is formed in pipes
- The net result
 - CO₂ is captured for only a short time
 - All you've done is move the limestone from one place to another

Problem #3/3

- It takes thousands of years to make a limestone cave
 - For illustration, stalactites form at a rate of 1-2 inches per century
- We're trying to speed up the process to 2760 million cubic yards each year
- The process doesn't speed up: limestone just isn't that soluble in water.

Capture CO₂ in Olivine

Carbon Capture Method #3

- Columbia Univ and Climeworks report they have turned CO₂ into rock
- https://www.ldeo.columbia.edu/gpg/projects/carbon-sequestration
- Small-scale plant has proven the concept in Iceland
- https://www.jwnenergy.com/article/2017/10/climeworkscaptures-co2-air-turns-it-rock-world-first/

Capture CO₂ in Olivine

 Mg_2SiO_4 (olivine) + 2 CO_2 = $2MgCO_3$ (magnesite) + SiO_2 (quartz)

- Olivine forms 60% to 80% of the Earth's mantle (i.e. it is abundant)
- The products are stable solids and easily stored
- Reaction rates are rapid at 185C
- Process: Frack Olivine deposits, heat to 185C, and pump CO₂ into ground

Capture CO2 in Olivine

Problem

- Climeworks hopes to bring cost down to \$100 to \$150 / ton of CO₂ by 2025
- This increases the cost of coal
 - \$0.02/kWh (current)
 - \$0.23/kWh @ \$100/ton
 - \$0.33/kWh @ \$150/ton

- 540lb of coal produce
 - -1 ton of CO_2
 - 486 kWh of electricity
 - \$48.6 in revenue at \$0.1/kWh
 - \$100 to \$150 in expenses
- 540lb of coal costs \$11
 - \$0.02/lb
- (\$100 + \$11) / 486kWh = \$0.23/kWh

Cost Comparison

Source: Energy and Information Administration https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf

Cents / kWh (2025 est)

4.8: Wind (onshore)

• 5.9: Solar PV

• 7.4: Hydro

• 7.9: Gas

• 9.0: Nuclear

23 to 33: Coal CCS

Carbon Sequestration Method #4: Idea

Rather than release CO₂
 into the atmosphere,
 store it underground

Problem 1/4

The volume of CO₂ gas is huge:

- Each year, the U.S. produces
 - 2669 million tons of CO₂
 - 1358 billion cubic yards of CO₂
- 1358 billion cubic yards is a huge volume.
 - 100,000 time the largest cave in the world
 - Miao Room, China, 14 million cubic yards
 - About 0.8 ppm of the volume of the Earth's atmosphere

The photographer's lights illuminate the green-hued Getu He river in the Miao Room—the world's largest cave chamber by volume.

PHOTOGRAPH BY CARSTEN PETER, NATIONAL GEOGRAPHIC

China's "Supercave" Takes Title as World's Most Enormous Cavern

Problem 2/4

- If you compress the CO₂, the volume becomes smaller. (good)
- It takes energy to compress
 CO₂ (bad)
 - 1lb Coal equals
 - 0.9kWh electricity
 - 3.7lb CO₂
 - 3.7lb CO₂ requires
 - 0.3kWh to compress to 100atm (100x less volume)
 - 4.5kWh to turn into dry ice (500x less volume)

Problem: 3/4

 The earth leaks: gasses don't remain underground

Problem: 4/4

- Requires an enormous amount of money be spent on infrastructure.
- Requires taxpayer to fund clean up costs of coal industry.

Conclusion

- Burning fossil fuels and then trying to put the CO2 back into the ground
 - Either cannot work, or
 - Is cost prohibitive.

What's the Point Behind Clean Coal?

- Confuse the public and politicians
 - Instill doubt
 - Mimic tactics used by the Tobacco industry
- Extend the life of stranded assets
 - Coal
 - Oil

Better Solution

- If you want to produce energy without adding to the atmosphere's CO₂ level, there are better alternatives:
 - Wind
 - Solar
- If you're interested in promoting these schemes, consider joining C.L.E.A.N.

